Article Review: Organosilicon-Based Ceramic Innovation: Polymer-Derived Ceramics (PDCs)

Main Article Content

Afridha Cita Savitri
Laely Septiya Wati
Nanda Nanda
Navila Nurliani
Maya Erliza Anggraeni
Marvin Horale Pasaribu

Abstract

Innovation and modern methods in ceramic production, as a transition from conventional/traditional methods, are needed to improve production efficiency and quality. One innovation in the ceramic industry is the polymer-derived ceramic (PDC) technology with the utilization of organosilicon compounds. PDCs are ceramics derived from preceramic organosilicon polymer precursors, which are generally divided into polysiloxane, polycarbosiloxane, polycarbosilane, polysilycarbodimiides, polysilazane, polyborosilazanes, polyborosilanes, and polyborosiloxanes. The transformation of organosilicon polymers into ceramics is carried out through four stages: shaping, cross-linking, pyrolysis, and ceramization. PDCs have high-temperature resistance properties, making them suitable for various applications in extreme environments. The forms of PDC applications are as semiconductors, sensors, coating/membranes, and fibers.

Article Details

Section
Articles

References

Alvi, S. A., & Akhtar, F. (2018). High temperature tribology of polymer derived ceramic composite coatings. Scientific reports, 8(1), 15105.

Barroso, G., Li, Q., Bordia, R. K., & Motz, G. (2018). Polymeric and Ceramic silicon-based coatings - a review. Jurnal of Materials Chemistry A, 7(5), 1936-1963.

Biesuz, M., Zera, E., Tomasi, M., Jana, P., Ersen, O., Baaziz, W., Sorarù, G. (2020). Polymer-derived Si3N4 nanofelts for flexible, high temperature, lightweight and easy-manufacturable super-thermal insulators. Applied Materials Today, 20, 100648.

Chaudhary, R. P., Parameswaran, C., Idrees, M., Rasaki, A. S., Liu, C., & Chen, Z. (2022, July). Additive Manufacturing of Polymer-Derived Ceramics: Materials, Technologies, Properties and Potential Applications. Progress in Materials Science, 128.

Chen, J., He, G., Liao, Z., & Zeng, B. (2008). Control of structure formation of polycarbosilane synthesized from polydimethylsilane by Kumada rearrangement. Journal of Applied Polymer Science, 108(5), 3114-3121.

Colombo, P., Mera, G., Riedel, R., & Soraru, G. D. (2010). Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. Journal of The American Ceramic Society, 93(7), 1805-1837.

Cramer, C. L., Armstrong, H., Betancourt, A. F., Han, L., Elliot, A. M., Curzio, E. L., Nawaz, K. (2020). Processing and properties of SiC composites made via binder jet 3D printing and infiltration and pyrolysis of preceramic polymer. Ceramic Engineering & Science, 320-331. doi:10.1002/ces2.10070.

Dongoran, J. et al. (2021) ‘Perkembangan Zeolit Sebagai Katalis Alam Potensial’, Jurnal Jejaring Matematika dan Sains, 3(2), pp. 28–39.

Drozdov, F. V., Milenin, S. A., Gorodov, V. V., Demchenko, N. V., Buzin, M. I., & Muzafarov, A. M. (2019). Crosslinked polymers based on polyborosiloxanes: Synthesis and properties. Journal of Organometallic Chemistry, 72-77.

Eick, B. M., & Youngblood, J. P. (2009). SiC nanofibers by pyrolysis of electrospun praceramic polymers. Journal of Materials Science, 44,

-165.

Flores, O., Schmalz, T., Krenkel, W., Heymann, L., & Motz, G. (2013). Selective cross-linking of oligosilazanes to tailored meltable polysilazanes for the processing of ceramic SiCN fibres. Journal of Materials Chemistry A, 1(48), 15406.

Fu, S., Zhu, M., & Zhu, Y. (2019). Organosilicon polymer-derived ceramic: An overview. Journal of Advanced Ceramics, 8(4), 457-478.

Garinas, W. (2009). Karakteristik Bahan Baku Kaolin Untuk Bahan Pembuatan Badan Isolator Listrik Keramik Porselen Fuse Cut Out (fco). Jurnal Sains dan Teknologi Indonesia, 11(2).

Grossenbacher, J., Gullo, M., Bakumov, V., Blugan, G., Kuebler, J., & Brugger, J. (2015). On the micrometre precise mould filling of liquid polymer derived ceramic precursor for 300-mm-thick high aspect ratio ceramic MEMS. Ceramics International, 41(1), 623-629.

Gunes, D., & Karagoz, B. (2022). Synthesis of Core?Shell Polyborosiloxanes as a Heat-Resistant Platform. ACS Omega, 43877-43882.

Hackbarth, H. G., Key, T. S., Ackley, B. J., Opletal, G., Rawal, A., Gallington, L., Bedford, N. M. (2023). Uncovering atomic-scale polymer-toceramic transformations in SiC polymer derived ceramics from polycarbosilanes. Journal of the European Ceramic Society.

Harshe, R., Balan, C., & Riedel, R. (2004). Amorphous Si(Al)OC ceramic from polysiloxanes: Bulk ceramic processing, crystallization behavior and applications. Journal of the European Ceramic Society, 24, 3471-3482.

Hauser, R., Nahar-Borchard, S., Riedel, R., Ikuhara, Y. H., & Iwamoto, Y. (2006). Polymer-Derived SiBCN Ceramic and their Potential Application for High Temperature Membranes. Journal of the Ceramic Society of Japan, 114(1330), 524-528.

He, L., Zhang, Z., Yang, X., Jiao, L., Li, Y., & Xu, C. (2015). Liquid polycarbosilanes: Synthesis and evaluation as precursors for SiC ceramic. Polymer Internationnal, 64(8), 979-985.

Horz, M., Zern, A., Berger, F., & Haug, J. (2005). Novel Polysilazanes as Precursors for Silicon Nitride/Silicon Carbide Composites Without “Free Carbon. Journal of the European Ceramic Society, 25(2), 99-110.

Hu, L.-H., & Raj, R. (2015). Semiconductive Behavior of Polymer-Derived SiCN Ceramics for Hydrogen Sensing. Journal of the American Ceramic Society, 98(4), 1052-1055.

Ionescu, E., Kleebe, H.-J., & Riedel, R. (2012). Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. Chemical Society Reviews, 41(15), 5032-5052.

Iwamoto, Y., Volger, W., Kroke, E., Riedel, R., Saitou, T., & Matsunaga, K. (2004). Crystallization Behavior of Amorphous Silicon Carbonitride Ceramics Derived from Organometallic Precursors. Journal of the American Ceramic Society, 84(10), 2170-2178.

Janakiraman, N., & Aldinger, F. (2009). Fabrication and characterization of fully dense Si-C-N ceramics from a poly(ureamethylvinyl)silazane precursor. Journal of the European Ceramic Society, 29, 163-173.

Ji, X., Wang, S., Shao, C., & Wang, H. (2018). High-Temperature Corrosion Behavior of SiBCN Fibers for Aerospace Applications. ACS Applied Materials & Interfaces, 10(23), 19712-19720.

Jia, Y., Ajayi, T., Roberts, M. J., Chung, C.-C., & Xu, C. (2020). Ultrahigh-Temperature Ceramic–Polymer-Derived SiOC Ceramic Composites for High-Performance Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 12(41), 46254-46266.

Klausmann, A., Morita, K., Johanns, K. E., Fasel, C., Durst, K., Mera, G., & Ionescu, E. (2015). Synthesis and high-temperature evolution of polysilylcarbodiime-derived SiCN ceramic coatings. Journal of the European Ceramic Society, 35(14), 3771-3780.

Kong, J., Maute, K., Frangopol, D., Liew, L.-A., Saravanan, R., & Raj, R. (2003). A real time human–machine interface for an ultrahigh temperature MEMS sensor–igniter. Sensors and Actuators A: Physical, 105(1), 23-30.

Lee, J., Butt, D. P., Baney, R. H., Bowers, C. R., & Tulenko, J. S. (2005). Synthesis and pyrolysis of novel polysilazane to SiBCN ceramic. Journal of Non-Crystalline Solids, 2995-3005.

Li, N., Cao, Y., Zhao, R., Xu, Y., & An, L. (2017). Polymer-derived SiAlOC ceramic pressure sensor with potential for high-temperature application. Sensors and Actuators A: Physical, 263, 174-178.

Li, P., Jin, H., Wei, S., Liu, H., Gao, N., & Shi, Z. (2020). Ceramization Mechanism of Ceramizable Silicone Rubber Composites with Nano Silica at Low Temperature. Materials, 13(3708), 1-12. doi:10.3390/ma13173708.

Liu, J., Zhang, L., Hu, F., Yang, J., Cheng, L., & Wang, Y. (2013). Polymer-derived yttrium silicate coatings on 2D C/SiC composites. Journal of the European Ceramic Society, 33(2), 433-439.

Liu, Y., Chen, K., Dong, F., Peng, S., Cui, Y., Zhang, C., Zhang, H. (2018). Effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers. Ceramics International, 44(9), 10199-10203.

Liu, Z., Picken, S. J., & Besseling, N. A. (2014). Polyborosiloxanes (PBSs), Synthetic Kinetics, and Characterization. Macromolecules, 47(14), 4531-4537.

Lodhe, M., Babu, N., Selvam, A., & Balasubramanian, M. (2015). Synthesis and characterization of high ceramic yield polycarbosilane precursor for SiC. Journal of Advanced Ceramics, 4(4), 307-311.

Mera, G., Gallei, M., Bernard, S., & Ionescu, E. (2015). Ceramic Nanocomposites from Tailor-Made Praceramic Polymers. Nanomaterials, 5, 468-540.

Nagaiah, N., Kapat, J., An, L., & Chow, L. (2006). Novel Polymer Derived Ceramic-High Temperature Heat Flux Sensor for Gas Turbine Environment. Journal of Physics: Conference Series, 34, 458-463.

Nurhakim. (2005). Bahan Galian Terkait Industri Keramik.

Ren, Z., Mujib, S. B., & Singh, G. (2021). High-temperature properties and applications of Si-based polymer-derived ceramics: A review. Materials, 14(3), 641.

Riedel, R., Mera, G., Hauser, R., & Klonczynski, A. (2006). Silicon-Based Polymer-Derived Ceramics: Synthesis Properties and Application -A Review. Journal of the Ceramic Society of Japan, 114(6), 425-444.

Ryu, H.-Y., Wang, Q., & Raj, R. (2010). Ultrahigh-Temperature Semiconductors Made from Polymer-Derived Ceramics. Journal of the American Ceramic Society, 93(6), 1668-1676.

Sacarescu, L. (2009). Polycarbosiloxane Networks. Materiale Plastice, 43-47.

Sarraf, F., Churakov, S. V., & Clemens, F. (2023). Praceramic polymers for additive manufacturing of silicate ceramics. Polymers, 15(22).

Schulz, M., Borner, M., Gottert, J., Hanemann, T., Haubelt, J., & Motz, G. (2004). Cross linking behavior of praceramic polymers effected by UV- and synchrotron radiation. Advanced Engineering Materials, 6(8), 676-680.

Seo, D., Jung, S., Lombardo, S., Feng, Z., Chen, J., & Zhang, Y. (2011). Fabrication and electrical properties of polymer-derived ceramic (PDC) thin films for high-temperature heat fluc sensors. Sensors and Actuators A: Physical, 165(2), 250-255.

Shao, G., Jiang, J., Jiang, M., Su, J., Liu, W., Wang, H., Zhang, R. (2020). Polymer-derived SiBCN ceramic pressure sensor with excellent sensing performance. Journal of Advanced Ceramics, 9(3), 374-379.

Terauds, K., Sanchez-Jimenez, P., Raj, R., Vakifahmetoglu, C., & Colombo, P. (2010). Giant piezoresistivity of polymer-derived ceramics at high temperatures. Journal of the European Ceramic Society, 30, 2203-2207.

Tite, M. S. (2008). Ceramic Production, Provenance and Use - A Review. Archaeometry, 50(2), 216-231.

Wang, G., & Song, Y. (2018). Enhancing the Yield of Polycarbosilane Synthesis via Recycling of Liquid By-product at Atmospheric Pressure. Ceramics International, 44(6), 1188-1194.

Widgeon, S., Mera, G., Gao, Y., Sen, S., Navrotsky, A., & Riedel, R. (2013). Effect of Precursor on Speciation and Nanostructure of SiBCN Polymer-Derived Ceramics. Journal of the American Ceramic Society, 96(5), 1651-1659.

Wu, N., Wan, Y., Wang, Y., & Ko, F. (2017). Conversion of hydrophilic SiOC nanofibrous membrane to robust hydrophobic materials by introducing palladium. Applied Surface Science, 425, 750-757.

Xie, S., Wang, Y., Lei, Y., Wang, B., Wu, N., Gou, Y., & Fang, D. (2015). A simply prepared flexible SiBOC ultrafine fiber mat with enhanced high-temperature stability and chemical resistance. RSC Advanced, 5(80), 64911-64917.

Yang, N., Xu, S., Zhang, D., & Xu, C. (2023). Super-Wideband Electromagnetic Absorbing TiC/SiOC Ceramic/Glass Composites Derived from Polysiloxane and Titanium Isopropoxide with Low Thickness (<1 mm). Advanced Engineering Materials.

Yu, Y., & Liu, Y. (2020). A large-pressure-range, large-sensing-distance wireless passive pressure sensor based on polymer infiltration pyrolysis-enhanced polymer-derived ceramic films. Measurement Science and Technology, 31(7), 075103.

Yu, Y., Huang, Q., Rhodes, S., Fang, J., & An, L. (2017). SiCNO-GO composites with the negative temperature coefficient of resistance for high-temperature sensor applications. Journal of the American Ceramic Society, 100(2), 592-601.

Zhang, C., Liu, Y., Cui, Y., Chen, K., Peng, S., Zhang, H., Yu, M. (2018). Comparison of effects of nitrogen sources on the structures and properties of SiBNC ceramic fiber precursors. Ceramic International, 44(12), 14878-14883.

Zhang, H., Xue, L., Li, J., & Qingyu, M. (2020). Hyperbranched Polycarbosiloxanes: Synthesis by Piers-Rubinsztajn Reaction and Application as Precursors to Magnetoceramics. Polymers.

Zhang, Q., Yang, Z., Jia, D., Chen, Q., & Zhou, Y. (2016). Synthesis and structural evolution of dual-boron-source-modified polysilazanederived SiBCN ceramics. New Journal of Chemistry, 40(8), 7034-7042.

Zhang, Z., Zeng, F., Han, J., Luo, Y., & Xu, C. (2011). Synthesis and characterization of a new liquid polymer precursor for Si-B-C-N ceramics. Journal of Materials Science, 5940-5947.

Zhao, R., Shao, G., Cao, Y., An, L., & Xu, C. (2014). Temperature sensor made of polymer-derived ceramics for high temperature applications. Sensors and Actuators A: Physical, 219, 58-64.