The Effect of Various Temperatures in Making Printed Sugar from Sugar Palm (Arenga pinnata (Wurmb.)
Main Article Content
Abstract
Palm sugar consumption levels may vary depending on societal habits and individual preferences. Palm sugar is a natural sweetener that comes from sap or water with a brownish color. However, the color of palm sugar varies from light to dark brown. So the aim of this research is to regulate the temperature for making sap sugar to prevent the formation of a brown color in making sugar. The method used in making sap sugar is setting various temperatures, to get a brighter color than the control with the help of spectrophotometry at a wavelength of 420 nm. The results in this study are absorbance data at each temperature, namely 1000C: 0.832 ± 0.023; 900C: 0.821 ± 0.051; 800C: 0.799 ± 0.012; 700C: 0.671 ± 0.027; 600C: 0.621 ± 0.034. Based on statistical analysis at temperatures of 700C and 600C it can significantly reduce the color intensity on spectrophotometer examination. The conclusion is that the appropriate temperature for processing sap sugar to reduce color intensity is 700C and 60 0C.
Article Details
References
Apriyanto, E., & Setiadi, D. (2016). Pengaruh Kondisi Tajuk Dan Aplikasi Getar Terhadap Produksi Nira Aren Di Rejang Lebong Bengkulu. Pertanian Tropik, 3(2).
Carabasa-Giribet, M., & Ibarz-Ribas, A. (2000). Kinetics of colour development in aqueous glucose systems at high temperatures. Journal of Food Engineering, 44(3), 181–189. https://doi.org/https://doi.org/10.1016/S0260-8774(00)00027-3
Davies, C., & Labuza, T. (2000). The Maillard Reaction Application to Confectionery Products.
Kam, J. H., Hogg, C., Fosbury, R., Shinhmar, H., & Jeffery, G. (2021). Mitochondria are specifically vulnerable to 420nm light in drosophila which undermines their function and is associated with reduced fly mobility. PloS One, 16(9), e0257149. https://doi.org/10.1371/journal.pone.0257149.
Kao, L. S., & Green, C. E. (2008). Analysis of Variance: Is There a Difference in Means and What Does It Mean? Journal of Surgical Research, 144(1), 158–170. https://doi.org/https://doi.org/10.1016/j.jss.2007.02.053
Kusumanto, D. (2016). Analisis Peluang Pengembangan Industri Gula Aren Dalam Mendukung Swasembada Gula Nasional. Pertanian Tropik, 3(2).
Martins, S. I. F. S., & van Boekel, M. A. J. S. (2003). Melanoidins extinction coefficient in the glucose/glycine Maillard reaction. Food Chemistry, 83(1), 135–142. https://doi.org/https://doi.org/10.1016/S0308-8146(03)00219-X.
Mastrocola, D., & Munari, M. (2000). Progress of the Maillard Reaction and Antioxidant Action of Maillard Reaction Products in Preheated Model Systems during Storage. Journal of Agricultural and Food Chemistry, 48, 3555–3559. https://doi.org/10.1021/jf000278a.
Musita, N. (2019). Pengembangan Produk Gula Semut dari Aren dengan Penambahan Bubuk Rempah. Warta Industri Hasil Pertanian, 36, 106. https://doi.org/10.32765/wartaihp.v36i2.5212.
Siregar, A. Z. (2016). Nventarisasi Serangga Penyerbuk, Hama Dan Penyakit Dominan Pada Aren. Pertanian Tropik, 3(2).
Wahyuni, S. (2019). Pemberdayaan petani aren (Arenga pinnata Merr) rakyat melalui diversifikasi produk nira aren di Desa Mabar Kecamatan Bangun Purba Kabupaten Deli Serdang. Unri Conference Series: Community Engagement, 1, 104–107. https://doi.org/10.31258/unricsce.1.104-107.
Youn, H.-Y., Chou, B. R., Cullen, A. P., & Sivak, J. G. (2009). Effects of 400nm, 420nm, and 435.8nm radiations on cultured human retinal pigment epithelial cells. Journal of Photochemistry and Photobiology B: Biology, 95(1), 64–70. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2009.01.001
